metal-organic compounds

 $\mu = 0.67 \text{ mm}^{-1}$ 

 $0.39 \times 0.39 \times 0.28 \text{ mm}$ 

14814 measured reflections

5931 independent reflections

4922 reflections with  $I > 2\sigma(I)$ 

T = 150 K

 $R_{\rm int} = 0.030$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 4-(4-Pyridyl)pyridinium bis(pyridine-2,6dicarboxylato)ferrate(III) tetrahydrate

## Janet Soleimannejad,<sup>a</sup>\* Hossein Aghabozorg<sup>b</sup> and Shabnam Sheshmani<sup>c</sup>

<sup>a</sup>Department of Chemistry, Ilam University, Ilam, Iran, <sup>b</sup>Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and <sup>c</sup>Department of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran Correspondence e-mail: janet\_soleimannejad@yahoo.com

Received 1 March 2010; accepted 5 March 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.099; data-to-parameter ratio = 16.0.

In the title compound,  $(C_{10}H_9N_2)[Fe(C_7H_3NO_4)_2]\cdot 4H_2O$  or  $(bpyH)[Fe(pydc)_2]\cdot 4H_2O$ , the asymmetric unit contains an  $[Fe(pydc)_2]^-$  (pydcH<sub>2</sub>= pyridine-2,6-dicarboxylic acid) anion, a protonated 4,4'-bipyridine as a counter-ion,  $(bpyH)^+$ , and four uncoordinated water molecules. The anion is a six-coordinate complex with a distorted octahedral geometry around the Fe<sup>III</sup> atom. A wide range of non-covalent interactions, *i.e.* O-H···O, O-H···N and N-H···O hydrogen bonds, ion pairing, C-O··· $\pi$  [3.431 (2) Å] and C-H··· $\pi$  stacking interactions result in the formation of a three-dimensional network structure.

#### **Related literature**

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Ramezanipour *et al.* (2008); Aghajani *et al.* (2009); For details on the importance of coordinative covalent bonds and weak intermolecular forces in forming extended organized networks, see: Steiner (2002).



### Experimental

#### Crystal data

 $(C_{10}H_9N_2)[Fe(C_7H_3NO_4)_2]\cdot 4H_2O$   $M_r = 615.31$ Triclinic,  $P\overline{1}$ a = 9.3759 (9) Å b = 9.3778 (9) Å c = 14.6284 (14) Å  $\alpha = 84.545 (2)^{\circ}$  $\beta = 89.246 (2)^{\circ}$   $\gamma = 87.062 (2)^{\circ}$   $V = 1278.7 (2) \text{ Å}^{3}$  Z = 2Mo  $K\alpha$  radiation

#### Data collection

Bruker SMART 1000 diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001)  $T_{min} = 0.782, T_{max} = 0.836$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.036 & 370 \text{ parameters} \\ wR(F^2) &= 0.099 & \text{H-atom parameters constrained} \\ S &= 1.04 & \Delta\rho_{\text{max}} &= 0.34 \text{ e} \text{ Å}^{-3} \\ 5931 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.52 \text{ e} \text{ Å}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

 $\mathit{Cg1}$  and  $\mathit{Cg2}$  are the centroids of the N3/C15–C19 and N1/C2–C6 rings, respectively.

| $D - H \cdots A$                        | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------|------|-------------------------|--------------|---------------------------|
| $O1W-H1B\cdots O6^{i}$                  | 0.85 | 2.22                    | 3.031 (2)    | 159                       |
| $O1W-H1A\cdots O3^{ii}$                 | 0.85 | 2.18                    | 2.976 (2)    | 157                       |
| $O2W - H2B \cdot \cdot \cdot O7^{ii}$   | 0.85 | 1.93                    | 2.726 (2)    | 156                       |
| $O2W - H2A \cdot \cdot \cdot O3W^{iii}$ | 0.85 | 1.88                    | 2.732 (2)    | 174                       |
| $O3W-H3A\cdots O5^{iv}$                 | 0.85 | 1.90                    | 2.713 (2)    | 160                       |
| $O3W - H3B \cdot \cdot \cdot N3^{v}$    | 0.85 | 1.95                    | 2.775 (2)    | 162                       |
| $O4W-H4B\cdots O4$                      | 0.85 | 1.99                    | 2.8220 (19)  | 168                       |
| $O4W - H4A \cdots O3W$                  | 0.85 | 1.99                    | 2.838 (2)    | 177                       |
| N4-H4 $C$ ···O2 $W^{vi}$                | 0.90 | 1.82                    | 2.691 (2)    | 163                       |
| $C5-H5\cdots Cg2$                       | 0.95 | 3.63                    | 3.750 (2)    | 90                        |
| $C17 - H17 \cdots Cg1$                  | 0.95 | 3.52                    | 3.708 (2)    | 94                        |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z; (vi) x, y + 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

Financial support from Ilam University is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2166).

#### References

- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Aghabozorg, H., Ramezanipour, F., Soleimannejad, J., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Moghimi, A., Attar Gharamaleki, J., Lippolis, V. & Blake, A. J. (2008). *Pol. J. Chem.* 82, 487–507.
- Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373–385.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

Acta Cryst. (2010). E66, m411 [doi:10.1107/S1600536810008597]

## 4-(4-Pyridyl)pyridinium bis(pyridine-2,6-dicarboxylato)ferrate(III) tetrahydrate

### J. Soleimannejad, H. Aghabozorg and S. Sheshmani

#### Comment

For the synthesis of supramolecular systems, coordinative covalent bonds and weak intermolecular forces are important to the assembly into extended organized networks (Steiner, 2002). Our research group has worked on the synthesis of supramolecular systems, and found out the role of non-covalent interactions such as hydrogen bonding, ion pairing and  $\pi$ - $\pi$  stacking in constructing the supramolecular crystalline compounds and their metal complexes (Aghabozorg, Manteghi *et al.*, 2008; Aghabozorg, Ramezanipour *et al.*, 2008, Aghajani *et al.*, 2009).

In the title compound, illustrated in Fig. 1, the metal ion is hexa-coordinated by two nitrogen atoms N1, and N2 and four oxygen atoms O1, O2, O3 and O4 of carboxylate groups of two  $(pydc)^{2-}$  ions. The Fe<sup>III</sup> atom is located in the center of a distorted octahedral arrangement. The N1–Fe–N2 angle shows deviation from linearity, 170.90 (6)°. The O2–Fe1–O4–C14, O2–Fe1–O3–C8, O4–Fe1–O1–C1 and O4–Fe1–O2–C7 torsion angles are 86.75 (14)°, -93.74 (13)°, -102.35 (14)° and 94.37 (14)°, respectively, indicating that two dianionic  $(pydc)^{2-}$  units are almost perpendicular to each other. Another characteristic solid state structural feature of this complex is dictated by the presence of a 4,4'-bipyridinium fragment as a proton acceptor that deprotonates pyridine-2,6-dicarboxylic acid. This leads to the formation of a metal-organo Fe<sup>III</sup> complex in which ion-pairing, metal-ligand coordination and intensive hydrogen-bonding play important roles in the construction of its three dimensional supramolecular network.

The crystal packing diagram (Fig. 2) indicates the interesting layered structure for the title complex. The space provided between two layers, consisting of  $(bpyH)^+$  cations, are filled with a layer of  $[Fe(pydc)_2]^-$  complex anions. In fact, the layers involving the Fe<sup>III</sup> complexes are bridged by  $(bpyH)^+$  counter ions *via* hydrogen bonding. The hydrogen bonding, that is O–H···O, O–H···N and N–H···O between carboxylate,  $(bpyH)^+$  and water molecules, throughout the lattice of the title complex plays an important role in stabilizing the crystal structure (Fig 2 and Table 1).

The C–O··· $\pi$  and C–H··· $\pi$  interactions in the title compound are shown in Fig. 3. The H17···*Cg*1 (*Cg*1: N1, C2–C6) distance is 3.519 (2) Å, the H5···*Cg*2 (*Cg*2: N3, C15–C19) distance is 3.631 (2) Å and the O8···*Cg*3 A (*Cg*3 A: N2A, C9A–C13A) distance is 3.431 (2) Å [Symmetry code: (A) = –*x*, –*y*, –*z*].

### Experimental

An solution of pyridine-2,6-dicarboxylic acid (312.38 mg, 2 mmol) and 4,4'-bipyridine (167.12 mg, 1 mmol) in water (15 ml) was refluxed for 1h. To this mixture was added to a solution of FeCl<sub>2</sub>.4H<sub>2</sub>O (99.4 mg, 0.5 mmol) in water (5 ml) and it was then heated for a further 1h. Green crystals of the complex, suitable for X-ray analysis, were obtained by slow evaporation of the solution at RT after two weeks.

## Refinement

The water and NH H-atoms were located in a low 2 $\theta$  difference Fourier map and refined with distance restraints: O—H = 0.85 (2) Å, and N-H 0.89 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å. For all H-atoms  $U_{iso}(H) = 1.2U_{eq}(\text{parent O-, N- or C-atom})$ .

Figures



Fig. 1. Molecular structure of the title compound, (bpyH)[Fe(pydc)<sub>2</sub>].4H<sub>2</sub>O. Thermal ellipsoids are drawn at the 50% probability level.



Fig. 2. A perspective view, along the a-axis, of the crystal packing of the title compound [dashed lines indicate hydrogen bonds - see Table 1 for details].



Fig. 3. A view of the C–O··· $\pi$  and C–H··· $\pi$  interactions in the title compound. The H17···Cg1 (Cg1: centroid of ring N1, C2—C6) distance is 3.519 (2) Å, the H5···Cg2 (Cg2: centroid of ring N3, C15—C19) distance is 3.631 (2) Å and the O8···Cg3 A (Cg3 A: centroid of ring N2A, C9A—C13A) distance is 3.431 (2) Å [Symmetry code: (A) = –x, –y, –z].

## 4-(4-Pyridyl)pyridinium bis(pyridine-2,6-dicarboxylato)ferrate(III) tetrahydrate

Crystal data (C10H9N2)[Fe(C7H3NO4)2]·4H2O Z = 2 $M_r = 615.31$ F(000) = 634Triclinic, P1  $D_{\rm x} = 1.598 {\rm Mg m}^{-3}$ Hall symbol: -P 1 Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å a = 9.3759 (9) Å Cell parameters from 7438 reflections *b* = 9.3778 (9) Å  $\theta = 2.5 - 28.6^{\circ}$ c = 14.6284 (14) Å $\mu = 0.67 \text{ mm}^{-1}$  $\alpha = 84.545 \ (2)^{\circ}$ T = 150 K $\beta = 89.246 \ (2)^{\circ}$ Block, green  $0.39 \times 0.39 \times 0.28 \text{ mm}$  $\gamma = 87.062 \ (2)^{\circ}$  $V = 1278.7 (2) \text{ Å}^3$ 

### Data collection

| Bruker SMART 1000<br>diffractometer                               | 5931 independent reflections                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                          | 4922 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                          | $R_{\rm int} = 0.030$                                                     |
| Detector resolution: 100 pixels mm <sup>-1</sup>                  | $\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ |
| ω scans                                                           | $h = -12 \rightarrow 11$                                                  |
| Absorption correction: multi-scan ( <i>SADABS</i> ; Bruker, 2001) | $k = -12 \rightarrow 12$                                                  |
| $T_{\min} = 0.782, T_{\max} = 0.836$                              | $l = -19 \rightarrow 19$                                                  |
| 14814 measured reflections                                        |                                                                           |

### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
| $R[F^2 > 2\sigma(F^2)] = 0.036$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.099$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.04                 | $w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.2243P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 5931 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 370 parameters                  | $\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$                                 |
| 0 restraints                    | $\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$                          |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | у            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|---------------|-------------------------------|
| Fe1 | 0.22857 (3)  | 0.50271 (3)  | 0.304811 (17) | 0.01665 (9)                   |
| O1W | 0.12803 (17) | 0.32200 (19) | 0.82149 (11)  | 0.0425 (4)                    |
| H1B | 0.2145       | 0.2957       | 0.8116        | 0.051*                        |
| H1A | 0.0913       | 0.3184       | 0.7690        | 0.051*                        |
| 01  | 0.07928 (14) | 0.37678 (14) | 0.26484 (8)   | 0.0216 (3)                    |

| $\Omega^{2W}$ | 0.25021 (16) | 0.03484(17)                | 0 60805 (0)   | 0.0356 (4)             |
|---------------|--------------|----------------------------|---------------|------------------------|
| H2B           | 0.23021 (10) | 0.03484 (17)               | 0.60895 (9)   | 0.0330 (4)             |
| наа           | 0.2416       | -0.0150                    | 0.6602        | 0.043*                 |
| 02            | 0.38786 (13) | 0.63723 (14)               | 0.27794 (9)   | 0.013                  |
| 03            | 0.07590 (14) | 0.65525 (14)               | 0.33404 (9)   | 0.0212(3)<br>0.0213(3) |
| O3W           | 0.77869 (15) | 0.00020(11)<br>0.10812(15) | 0.22072(9)    | 0.0273(3)              |
| НЗА           | 0.8334       | 0 1769                     | 0.2080        | 0.033*                 |
| H3B           | 0 7778       | 0.0637                     | 0.1727        | 0.033*                 |
| 04            | 0 36699 (14) | 0 33767 (14)               | 0 34487 (9)   | 0.0223 (3)             |
| O4W           | 0.53959 (16) | 0.30365 (17)               | 0.18817 (10)  | 0.0342 (4)             |
| H4B           | 0.4969       | 0.3050                     | 0.2397        | 0.041*                 |
| H4A           | 0.6119       | 0.2454                     | 0.1960        | 0.041*                 |
| 05            | -0.02554(15) | 0.29003 (16)               | 0.14699 (10)  | 0.0308 (3)             |
| 06            | 0 54940 (14) | 0 72094 (15)               | 0 17475 (10)  | 0.0274(3)              |
| 07            | -0.03745(14) | 0.76723 (15)               | 0.44505 (10)  | 0.0280(3)              |
| 08            | 0.50477 (15) | 0.23244 (15)               | 0.45845 (10)  | 0.0277(3)              |
| N1            | 0.25170(15)  | 0.51693 (16)               | 0 16448 (10)  | 0.0277(3)              |
| N2            | 0.23620 (15) | 0 50323 (16)               | 0 44512 (10)  | 0.0166(3)              |
| N3            | 0 22726 (18) | 0.97703 (19)               | -0.04433(11)  | 0.0269(4)              |
| N4            | 0.28135 (18) | 0 99456 (17)               | 0 42996 (11)  | 0.0244(4)              |
| H4C           | 0.2889       | 1 0021                     | 0 4902        | 0.029*                 |
| C1            | 0.06258 (19) | 0 3626 (2)                 | 0 17921 (13)  | 0.0210(4)              |
| C2            | 0 16527 (19) | 0.4448(2)                  | 0.11620(12)   | 0.0194 (4)             |
| C3            | 0.1780 (2)   | 0.4493 (2)                 | 0.02214 (13)  | 0.0233 (4)             |
| H3            | 0.1173       | 0.3968                     | -0.0123       | 0.028*                 |
| C4            | 0.2818 (2)   | 0.5326 (2)                 | -0.02104(13)  | 0.0248 (4)             |
| H4            | 0.2916       | 0.5391                     | -0.0860       | 0.030*                 |
| C5            | 0.3719 (2)   | 0.6067 (2)                 | 0.03041 (13)  | 0.0219 (4)             |
| Н5            | 0.4434       | 0.6638                     | 0.0015        | 0.026*                 |
| C6            | 0.35415 (19) | 0.59466 (19)               | 0.12467 (13)  | 0.0187 (4)             |
| C7            | 0.44092 (19) | 0.65836 (19)               | 0.19604 (13)  | 0.0200 (4)             |
| C8            | 0.05410 (19) | 0.6827 (2)                 | 0.41791 (13)  | 0.0206 (4)             |
| С9            | 0.15317 (19) | 0.59809 (19)               | 0.48584 (12)  | 0.0192 (4)             |
| C10           | 0.1634 (2)   | 0.6097 (2)                 | 0.57899 (13)  | 0.0237 (4)             |
| H10           | 0.1047       | 0.6778                     | 0.6083        | 0.028*                 |
| C11           | 0.2620 (2)   | 0.5190 (2)                 | 0.62818 (13)  | 0.0268 (4)             |
| H11           | 0.2717       | 0.5251                     | 0.6922        | 0.032*                 |
| C12           | 0.3471 (2)   | 0.4188 (2)                 | 0.58516 (13)  | 0.0234 (4)             |
| H12           | 0.4142       | 0.3557                     | 0.6188        | 0.028*                 |
| C13           | 0.33042 (18) | 0.41466 (19)               | 0.49149 (12)  | 0.0183 (4)             |
| C14           | 0.41062 (19) | 0.3178 (2)                 | 0.42920 (13)  | 0.0196 (4)             |
| C15           | 0.2438 (2)   | 0.9931 (2)                 | 0.14461 (13)  | 0.0205 (4)             |
| C16           | 0.1444 (2)   | 0.9092 (2)                 | 0.10825 (13)  | 0.0223 (4)             |
| H16           | 0.0793       | 0.8574                     | 0.1472        | 0.027*                 |
| C17           | 0.1425 (2)   | 0.9031 (2)                 | 0.01440 (14)  | 0.0264 (4)             |
| H17           | 0.0769       | 0.8427                     | -0.0097       | 0.032*                 |
| C18           | 0.3193 (2)   | 1.0607 (2)                 | -0.00902 (14) | 0.0296 (5)             |
| H18           | 0.3784       | 1.1164                     | -0.0501       | 0.036*                 |
| C19           | 0.3330 (2)   | 1.0707 (2)                 | 0.08356 (14)  | 0.0266 (4)             |

| H19 | 0.4021       | 1.1294       | 0.1056       | 0.032*     |
|-----|--------------|--------------|--------------|------------|
| C20 | 0.25691 (19) | 0.99744 (19) | 0.24448 (12) | 0.0190 (4) |
| C21 | 0.1369 (2)   | 1.0210 (2)   | 0.29944 (13) | 0.0232 (4) |
| H21 | 0.0449       | 1.0364       | 0.2727       | 0.028*     |
| C22 | 0.1529 (2)   | 1.0217 (2)   | 0.39210 (14) | 0.0258 (4) |
| H22 | 0.0723       | 1.0417       | 0.4297       | 0.031*     |
| C23 | 0.3993 (2)   | 0.9715 (2)   | 0.37953 (13) | 0.0241 (4) |
| H23 | 0.4892       | 0.9528       | 0.4086       | 0.029*     |
| C24 | 0.3899 (2)   | 0.9751 (2)   | 0.28632 (13) | 0.0220 (4) |
| H24 | 0.4736       | 0.9623       | 0.2501       | 0.026*     |
|     |              |              |              |            |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|--------------|--------------|--------------|---------------|--------------|---------------|
| Fe1 | 0.01791 (14) | 0.01966 (15) | 0.01226 (14) | -0.00143 (10) | 0.00009 (10) | -0.00068 (10) |
| O1W | 0.0339 (9)   | 0.0640 (12)  | 0.0285 (8)   | -0.0033 (8)   | -0.0037 (7)  | 0.0012 (8)    |
| 01  | 0.0220 (7)   | 0.0266 (7)   | 0.0167 (6)   | -0.0064 (5)   | 0.0013 (5)   | -0.0019 (5)   |
| O2W | 0.0389 (9)   | 0.0457 (9)   | 0.0185 (7)   | 0.0174 (7)    | 0.0055 (6)   | 0.0049 (6)    |
| O2  | 0.0222 (7)   | 0.0256 (7)   | 0.0165 (6)   | -0.0060 (5)   | -0.0016 (5)  | -0.0021 (5)   |
| 03  | 0.0222 (7)   | 0.0237 (7)   | 0.0174 (6)   | 0.0022 (5)    | -0.0021 (5)  | -0.0011 (5)   |
| O3W | 0.0310 (8)   | 0.0322 (8)   | 0.0191 (7)   | -0.0054 (6)   | 0.0032 (6)   | -0.0027 (6)   |
| O4  | 0.0248 (7)   | 0.0237 (7)   | 0.0179 (7)   | 0.0030 (5)    | 0.0004 (5)   | -0.0018 (5)   |
| O4W | 0.0325 (8)   | 0.0423 (9)   | 0.0255 (8)   | 0.0069 (7)    | 0.0086 (6)   | 0.0026 (6)    |
| 05  | 0.0305 (8)   | 0.0375 (8)   | 0.0265 (8)   | -0.0144 (6)   | -0.0019 (6)  | -0.0058 (6)   |
| 06  | 0.0230 (7)   | 0.0316 (8)   | 0.0279 (8)   | -0.0095 (6)   | 0.0022 (6)   | -0.0002 (6)   |
| 07  | 0.0256 (7)   | 0.0281 (8)   | 0.0298 (8)   | 0.0052 (6)    | 0.0029 (6)   | -0.0048 (6)   |
| 08  | 0.0254 (7)   | 0.0257 (7)   | 0.0306 (8)   | 0.0041 (6)    | -0.0030 (6)  | 0.0024 (6)    |
| N1  | 0.0168 (7)   | 0.0186 (7)   | 0.0158 (7)   | -0.0015 (6)   | 0.0006 (6)   | -0.0001 (6)   |
| N2  | 0.0174 (7)   | 0.0184 (7)   | 0.0140 (7)   | -0.0032 (6)   | 0.0005 (6)   | 0.0001 (6)    |
| N3  | 0.0287 (9)   | 0.0309 (9)   | 0.0205 (8)   | 0.0030 (7)    | -0.0010 (7)  | -0.0022 (7)   |
| N4  | 0.0338 (9)   | 0.0233 (8)   | 0.0164 (8)   | -0.0067 (7)   | -0.0013 (7)  | -0.0009 (6)   |
| C1  | 0.0198 (9)   | 0.0224 (9)   | 0.0210 (9)   | -0.0013 (7)   | -0.0003 (7)  | -0.0033 (7)   |
| C2  | 0.0185 (9)   | 0.0224 (9)   | 0.0174 (9)   | 0.0002 (7)    | -0.0017 (7)  | -0.0026 (7)   |
| C3  | 0.0227 (9)   | 0.0288 (10)  | 0.0190 (9)   | -0.0006 (8)   | -0.0024 (8)  | -0.0044 (8)   |
| C4  | 0.0267 (10)  | 0.0314 (11)  | 0.0152 (9)   | 0.0033 (8)    | 0.0017 (8)   | 0.0004 (8)    |
| C5  | 0.0215 (9)   | 0.0245 (10)  | 0.0183 (9)   | 0.0014 (7)    | 0.0033 (7)   | 0.0027 (7)    |
| C6  | 0.0164 (8)   | 0.0191 (9)   | 0.0197 (9)   | 0.0011 (7)    | 0.0015 (7)   | 0.0009 (7)    |
| C7  | 0.0190 (9)   | 0.0189 (9)   | 0.0213 (9)   | 0.0002 (7)    | -0.0011 (7)  | 0.0019 (7)    |
| C8  | 0.0190 (9)   | 0.0204 (9)   | 0.0230 (10)  | -0.0049 (7)   | 0.0015 (7)   | -0.0030 (7)   |
| C9  | 0.0182 (9)   | 0.0213 (9)   | 0.0187 (9)   | -0.0053 (7)   | 0.0024 (7)   | -0.0028 (7)   |
| C10 | 0.0242 (10)  | 0.0295 (11)  | 0.0185 (9)   | -0.0076 (8)   | 0.0057 (8)   | -0.0062 (8)   |
| C11 | 0.0309 (11)  | 0.0357 (11)  | 0.0149 (9)   | -0.0117 (9)   | 0.0008 (8)   | -0.0025 (8)   |
| C12 | 0.0225 (9)   | 0.0290 (10)  | 0.0184 (9)   | -0.0067 (8)   | -0.0034 (7)  | 0.0033 (8)    |
| C13 | 0.0155 (8)   | 0.0216 (9)   | 0.0174 (9)   | -0.0050(7)    | 0.0005 (7)   | 0.0017 (7)    |
| C14 | 0.0182 (9)   | 0.0192 (9)   | 0.0210 (9)   | -0.0042 (7)   | 0.0005 (7)   | 0.0018 (7)    |
| C15 | 0.0207 (9)   | 0.0203 (9)   | 0.0201 (9)   | 0.0013 (7)    | 0.0002 (7)   | -0.0015 (7)   |
| C16 | 0.0217 (9)   | 0.0223 (9)   | 0.0224 (10)  | -0.0020 (7)   | 0.0004 (8)   | 0.0001 (7)    |
| C17 | 0.0252 (10)  | 0.0276 (10)  | 0.0271 (10)  | 0.0016 (8)    | -0.0059 (8)  | -0.0072 (8)   |

| ~               |               |             |             |              |             |             |
|-----------------|---------------|-------------|-------------|--------------|-------------|-------------|
| C18             | 0.0301 (11)   | 0.0349 (12) | 0.0230 (10) | -0.0050 (9)  | 0.0025 (8)  | 0.0030 (8)  |
| C19             | 0.0250 (10)   | 0.0301 (11) | 0.0249 (10) | -0.0070 (8)  | 0.0001 (8)  | -0.0002 (8) |
| C20             | 0.0227 (9)    | 0.0152 (9)  | 0.0189 (9)  | -0.0023 (7)  | -0.0006 (7) | 0.0000 (7)  |
| C21             | 0.0196 (9)    | 0.0258 (10) | 0.0241 (10) | -0.0019 (8)  | 0.0005 (8)  | -0.0018 (8) |
| C22             | 0.0264 (10)   | 0.0263 (10) | 0.0249 (10) | -0.0054 (8)  | 0.0062 (8)  | -0.0024 (8) |
| C23             | 0.0257 (10)   | 0.0204 (9)  | 0.0260 (10) | -0.0024 (8)  | -0.0050 (8) | -0.0002 (8) |
| C24             | 0.0219 (9)    | 0.0208 (9)  | 0.0234 (10) | -0.0010 (7)  | 0.0012 (8)  | -0.0028 (7) |
| Geometric param | neters (Å, °) |             |             |              |             |             |
| Fe1—O1          |               | 2.0045 (13) | C           | 3—C4         | 1.1         | 388 (3)     |
| Fe1—O2          |               | 2.0149 (13) | C           | 3—Н3         | 0.0         | 9500        |
| Fe1—O4          |               | 2.0161 (13) | C4          | 1—C5         | 1.1         | 392 (3)     |
| Fe1—O3          |               | 2.0417 (13) | C           | 1—H4         | 0.9         | 9500        |
| Fe1—N1          |               | 2.0538 (15) | C           | 5—С6         | 1.1         | 381 (3)     |
| Fe1—N2          |               | 2.0552 (15) | C           | 5—Н5         | 0.9         | 9500        |
| O1W—H1B         |               | 0.8500      | C           | 6—C7         | 1.:         | 516 (3)     |
| O1W—H1A         |               | 0.8501      | C           | 3—С9         | 1.:         | 510 (3)     |
| 01—C1           |               | 1.285 (2)   | C           | <b>—</b> C10 | 1.1         | 382 (3)     |
| O2W—H2B         |               | 0.8500      | C           | 10—C11       | 1.1         | 385 (3)     |
| O2W—H2A         |               | 0.8500      | C           | I0—H10       | 0.9         | 9500        |
| O2—C7           |               | 1.293 (2)   | C           | 11—C12       | 1.1         | 392 (3)     |
| O3—C8           |               | 1.289 (2)   | C           | 1—H11        | 0.9         | 9500        |
| O3W—H3A         |               | 0.8500      | C           | 12—C13       | 1.1         | 386 (3)     |
| O3W—H3B         |               | 0.8501      | C           | 2—H12        | 0.9         | 9500        |
| O4—C14          |               | 1.298 (2)   | C           | 13—C14       | 1.:         | 513 (3)     |
| O4W—H4B         |               | 0.8500      | C           | 15—C16       | 1.          | 392 (3)     |
| O4W—H4A         |               | 0.8500      | C           | 15—C19       | 1.          | 395 (3)     |
| O5—C1           |               | 1.224 (2)   | C           | 15—C20       | 1.4         | 472 (3)     |
| O6—C7           |               | 1.222 (2)   | C           | l6—C17       | 1.          | 380 (3)     |
| O7—C8           |               | 1.226 (2)   | C           | l6—H16       | 0.9         | 9500        |
| O8—C14          |               | 1.215 (2)   | C           | 17—H17       | 0.9         | 9500        |
| N1—C6           |               | 1.330 (2)   | C           | 18—C19       | 1.          | 374 (3)     |
| N1—C2           |               | 1.332 (2)   | C           | 18—H18       | 0.9         | 9500        |
| N2—C13          |               | 1.328 (2)   | C           | I9—H19       | 0.9         | 9500        |
| N2—C9           |               | 1.330 (2)   | C           | 20—C24       | 1.          | 393 (3)     |
| N3—C17          |               | 1.333 (3)   | C           | 20—C21       | 1.          | 395 (3)     |
| N3—C18          |               | 1.337 (3)   | C           | 21—C22       | 1.          | 366 (3)     |
| N4—C22          |               | 1.335 (3)   | C           | 21—H21       | 0.9         | 9500        |
| N4—C23          |               | 1.341 (3)   | C           | 22—Н22       | 0.9         | 9500        |
| N4—H4C          |               | 0.8951      | C           | 23—C24       | 1.          | 365 (3)     |
| C1—C2           |               | 1.513 (3)   | C           | 23—Н23       | 0.9         | 9500        |
| C2—C3           |               | 1.376 (3)   | C           | 24—H24       | 0.9         | 9500        |
| O1—Fe1—O2       |               | 151.86 (5)  | O.          | 2—С7—С6      | 11          | 2.77 (15)   |
| O1—Fe1—O4       |               | 94.25 (5)   | O           | 7—С8—О3      | 12          | 26.24 (18)  |
| O2—Fe1—O4       |               | 92.07 (5)   | O           | 7—С8—С9      | 11          | 9.82 (17)   |
| O1—Fe1—O3       |               | 91.06 (5)   | 0.          | 3—С8—С9      | 11          | 3.94 (15)   |
| O2—Fe1—O3       |               | 96.57 (5)   | N           | 2—С9—С10     | 12          | 20.84 (18)  |
| O4—Fe1—O3       |               | 150.97 (5)  | N           | 2—С9—С8      | 11          | 1.22 (15)   |
|                 |               |             |             |              |             |             |

| O1—Fe1—N1    | 76.29 (5)    | C10—C9—C8   | 127.94 (17) |
|--------------|--------------|-------------|-------------|
| O2—Fe1—N1    | 75.58 (5)    | C9—C10—C11  | 117.76 (18) |
| O4—Fe1—N1    | 101.99 (6)   | C9—C10—H10  | 121.1       |
| O3—Fe1—N1    | 106.99 (5)   | C11-C10-H10 | 121.1       |
| O1—Fe1—N2    | 112.55 (5)   | C10-C11-C12 | 120.97 (18) |
| O2—Fe1—N2    | 95.58 (5)    | C10-C11-H11 | 119.5       |
| O4—Fe1—N2    | 75.80 (6)    | C12—C11—H11 | 119.5       |
| O3—Fe1—N2    | 75.81 (5)    | C13—C12—C11 | 117.54 (18) |
| N1—Fe1—N2    | 170.90 (6)   | C13—C12—H12 | 121.2       |
| H1B—O1W—H1A  | 101.7        | C11—C12—H12 | 121.2       |
| C1—O1—Fe1    | 120.32 (12)  | N2-C13-C12  | 120.78 (17) |
| H2B—O2W—H2A  | 105.6        | N2-C13-C14  | 111.52 (15) |
| C7—O2—Fe1    | 120.81 (11)  | C12—C13—C14 | 127.69 (17) |
| C8—O3—Fe1    | 119.73 (12)  | O8—C14—O4   | 126.06 (18) |
| H3A—O3W—H3B  | 105.5        | O8—C14—C13  | 121.30 (17) |
| C14—O4—Fe1   | 120.54 (12)  | O4—C14—C13  | 112.64 (16) |
| H4B—O4W—H4A  | 107.2        | C16—C15—C19 | 117.95 (18) |
| C6—N1—C2     | 121.95 (16)  | C16—C15—C20 | 121.17 (17) |
| C6—N1—Fe1    | 119.33 (12)  | C19—C15—C20 | 120.87 (17) |
| C2—N1—Fe1    | 118.70 (12)  | C17—C16—C15 | 118.55 (18) |
| C13—N2—C9    | 122.10 (16)  | C17—C16—H16 | 120.7       |
| C13—N2—Fe1   | 118.71 (12)  | C15—C16—H16 | 120.7       |
| C9—N2—Fe1    | 119.05 (12)  | N3—C17—C16  | 123.77 (18) |
| C17—N3—C18   | 117.23 (17)  | N3—C17—H17  | 118.1       |
| C22—N4—C23   | 122.20 (17)  | C16—C17—H17 | 118.1       |
| C22—N4—H4C   | 117.7        | N3—C18—C19  | 123.52 (19) |
| C23—N4—H4C   | 119.7        | N3—C18—H18  | 118.2       |
| O5—C1—O1     | 125.95 (18)  | C19—C18—H18 | 118.2       |
| O5—C1—C2     | 119.91 (17)  | C18—C19—C15 | 118.90 (19) |
| O1—C1—C2     | 114.13 (15)  | C18—C19—H19 | 120.5       |
| N1—C2—C3     | 120.86 (17)  | C15—C19—H19 | 120.5       |
| N1—C2—C1     | 110.55 (15)  | C24—C20—C21 | 118.58 (17) |
| C3—C2—C1     | 128.58 (17)  | C24—C20—C15 | 120.40 (17) |
| C2—C3—C4     | 118.15 (17)  | C21—C20—C15 | 121.00 (17) |
| С2—С3—Н3     | 120.9        | C22—C21—C20 | 119.35 (18) |
| С4—С3—Н3     | 120.9        | C22—C21—H21 | 120.3       |
| C3—C4—C5     | 120.30 (17)  | C20—C21—H21 | 120.3       |
| C3—C4—H4     | 119.9        | N4—C22—C21  | 120.22 (18) |
| C5—C4—H4     | 119.9        | N4—C22—H22  | 119.9       |
| C6—C5—C4     | 118.09 (17)  | C21—C22—H22 | 119.9       |
| С6—С5—Н5     | 121.0        | N4—C23—C24  | 119.81 (18) |
| С4—С5—Н5     | 121.0        | N4—C23—H23  | 120.1       |
| N1—C6—C5     | 120.63 (17)  | C24—C23—H23 | 120.1       |
| N1—C6—C7     | 110.76 (15)  | C23—C24—C20 | 119.74 (18) |
| C5—C6—C7     | 128.61 (17)  | C23—C24—H24 | 120.1       |
| O6—C7—O2     | 126.05 (17)  | C20—C24—H24 | 120.1       |
| O6—C7—C6     | 121.18 (17)  |             |             |
| O2—Fe1—O1—C1 | 0.1 (2)      | C4—C5—C6—N1 | -1.5(3)     |
| 04—Fe1—01—C1 | -102.35 (14) | C4—C5—C6—C7 | 177.18 (18) |
| -            | ( )          |             |             |

| O3—Fe1—O1—C1  | 106.21 (14)  | Fe1—O2—C7—O6    | -169.14 (15) |
|---------------|--------------|-----------------|--------------|
| N1—Fe1—O1—C1  | -1.03 (13)   | Fe1—O2—C7—C6    | 10.3 (2)     |
| N2—Fe1—O1—C1  | -178.73 (13) | N1—C6—C7—O6     | 172.26 (17)  |
| O1—Fe1—O2—C7  | -8.6 (2)     | C5—C6—C7—O6     | -6.5 (3)     |
| O4—Fe1—O2—C7  | 94.37 (14)   | N1—C6—C7—O2     | -7.2 (2)     |
| O3—Fe1—O2—C7  | -113.39 (14) | C5—C6—C7—O2     | 174.08 (18)  |
| N1—Fe1—O2—C7  | -7.48 (13)   | Fe1—O3—C8—O7    | -176.98 (15) |
| N2—Fe1—O2—C7  | 170.30 (13)  | Fe1—O3—C8—C9    | 2.3 (2)      |
| O1—Fe1—O3—C8  | 113.40 (13)  | C13—N2—C9—C10   | 1.0 (3)      |
| O2—Fe1—O3—C8  | -93.74 (13)  | Fe1—N2—C9—C10   | -174.73 (13) |
| O4—Fe1—O3—C8  | 12.7 (2)     | C13—N2—C9—C8    | -178.78 (15) |
| N1—Fe1—O3—C8  | -170.62 (13) | Fe1—N2—C9—C8    | 5.50 (19)    |
| N2—Fe1—O3—C8  | 0.39 (13)    | O7—C8—C9—N2     | 174.39 (17)  |
| O1—Fe1—O4—C14 | -120.69 (13) | O3—C8—C9—N2     | -4.9 (2)     |
| O2—Fe1—O4—C14 | 86.75 (14)   | O7—C8—C9—C10    | -5.4 (3)     |
| O3—Fe1—O4—C14 | -20.8 (2)    | O3—C8—C9—C10    | 175.31 (17)  |
| N1—Fe1—O4—C14 | 162.44 (13)  | N2-C9-C10-C11   | -0.4 (3)     |
| N2—Fe1—O4—C14 | -8.49 (13)   | C8—C9—C10—C11   | 179.32 (17)  |
| O1—Fe1—N1—C6  | -177.84 (14) | C9-C10-C11-C12  | -0.4 (3)     |
| O2—Fe1—N1—C6  | 2.71 (13)    | C10-C11-C12-C13 | 0.7 (3)      |
| O4—Fe1—N1—C6  | -86.34 (14)  | C9—N2—C13—C12   | -0.7 (3)     |
| O3—Fe1—N1—C6  | 95.29 (14)   | Fe1—N2—C13—C12  | 175.02 (13)  |
| O1—Fe1—N1—C2  | 0.59 (13)    | C9—N2—C13—C14   | 179.86 (15)  |
| O2—Fe1—N1—C2  | -178.86 (14) | Fe1-N2-C13-C14  | -4.41 (19)   |
| O4—Fe1—N1—C2  | 92.09 (14)   | C11—C12—C13—N2  | -0.1 (3)     |
| O3—Fe1—N1—C2  | -86.28 (14)  | C11—C12—C13—C14 | 179.21 (17)  |
| O1—Fe1—N2—C13 | 95.46 (13)   | Fe1             | -171.42 (15) |
| O2—Fe1—N2—C13 | -83.99 (13)  | Fe1-04-C14-C13  | 8.6 (2)      |
| O4—Fe1—N2—C13 | 6.73 (12)    | N2-C13-C14-O8   | 177.55 (16)  |
| O3—Fe1—N2—C13 | -179.38 (14) | C12-C13-C14-O8  | -1.8 (3)     |
| O1—Fe1—N2—C9  | -88.68 (14)  | N2-C13-C14-O4   | -2.5 (2)     |
| O2—Fe1—N2—C9  | 91.87 (13)   | C12—C13—C14—O4  | 178.16 (17)  |
| O4—Fe1—N2—C9  | -177.40 (14) | C19—C15—C16—C17 | 2.3 (3)      |
| O3—Fe1—N2—C9  | -3.51 (13)   | C20-C15-C16-C17 | -176.39 (17) |
| Fe1—O1—C1—O5  | -179.29 (15) | C18—N3—C17—C16  | 0.4 (3)      |
| Fe1—O1—C1—C2  | 1.2 (2)      | C15-C16-C17-N3  | -2.5 (3)     |
| C6—N1—C2—C3   | -0.7 (3)     | C17—N3—C18—C19  | 1.9 (3)      |
| Fe1—N1—C2—C3  | -179.05 (14) | N3—C18—C19—C15  | -2.0 (3)     |
| C6—N1—C2—C1   | 178.22 (16)  | C16-C15-C19-C18 | -0.2 (3)     |
| Fe1—N1—C2—C1  | -0.2 (2)     | C20-C15-C19-C18 | 178.46 (18)  |
| O5-C1-C2-N1   | 179.83 (17)  | C16-C15-C20-C24 | 129.3 (2)    |
| O1-C1-C2-N1   | -0.7 (2)     | C19—C15—C20—C24 | -49.3 (3)    |
| O5—C1—C2—C3   | -1.4 (3)     | C16—C15—C20—C21 | -49.4 (3)    |
| O1—C1—C2—C3   | 178.12 (18)  | C19—C15—C20—C21 | 132.0 (2)    |
| N1—C2—C3—C4   | -0.9 (3)     | C24—C20—C21—C22 | 0.1 (3)      |
| C1—C2—C3—C4   | -179.59 (18) | C15—C20—C21—C22 | 178.81 (17)  |
| C2—C3—C4—C5   | 1.3 (3)      | C23—N4—C22—C21  | 2.8 (3)      |
| C3—C4—C5—C6   | -0.1 (3)     | C20—C21—C22—N4  | -2.6 (3)     |
| C2—N1—C6—C5   | 1.9 (3)      | C22—N4—C23—C24  | -0.2 (3)     |

| Fe1—N1—C6—C5 | -179.73 (13) | N4—C23—C24—C20  | -2.3 (3)     |
|--------------|--------------|-----------------|--------------|
| C2—N1—C6—C7  | -176.97 (16) | C21—C20—C24—C23 | 2.3 (3)      |
| Fe1—N1—C6—C7 | 1.40 (19)    | C15—C20—C24—C23 | -176.38 (17) |

## Hydrogen-bond geometry (Å, °)

| Cg1 and Cg2 are the centroids of the N3/C15                                                                                                                                                | -C19 and N1/C2- | C6 rings, respectiv | ely.         |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|--------------|------------|--|
| D—H···A                                                                                                                                                                                    | <i>D</i> —Н     | $H \cdots A$        | $D \cdots A$ | D—H··· $A$ |  |
| O1W—H1B···O6 <sup>i</sup>                                                                                                                                                                  | 0.85            | 2.22                | 3.031 (2)    | 159        |  |
| O1W—H1A···O3 <sup>ii</sup>                                                                                                                                                                 | 0.85            | 2.18                | 2.976 (2)    | 157        |  |
| O2W—H2B···O7 <sup>ii</sup>                                                                                                                                                                 | 0.85            | 1.93                | 2.726 (2)    | 156        |  |
| O2W—H2A···O3W <sup>iii</sup>                                                                                                                                                               | 0.85            | 1.88                | 2.732 (2)    | 174        |  |
| O3W—H3A····O5 <sup>iv</sup>                                                                                                                                                                | 0.85            | 1.90                | 2.713 (2)    | 160        |  |
| O3W—H3B···N3 <sup>v</sup>                                                                                                                                                                  | 0.85            | 1.95                | 2.775 (2)    | 162        |  |
| O4W—H4B···O4                                                                                                                                                                               | 0.85            | 1.99                | 2.8220 (19)  | 168        |  |
| O4W—H4A···O3W                                                                                                                                                                              | 0.85            | 1.99                | 2.838 (2)    | 177        |  |
| N4—H4C···O2W <sup>vi</sup>                                                                                                                                                                 | 0.90            | 1.82                | 2.691 (2)    | 163        |  |
| C5—H5…Cg2                                                                                                                                                                                  | 0.95            | 3.63                | 3.750 (2)    | 90         |  |
| C17—H17…Cg1                                                                                                                                                                                | 0.95            | 3.52                | 3.708 (2)    | 94         |  |
| Symmetry codes: (i) $-x+1$ , $-y+1$ , $-z+1$ ; (ii) $-x$ , $-y+1$ , $-z+1$ ; (iii) $-x+1$ , $-y$ , $-z+1$ ; (iv) $x+1$ , $y$ , $z$ ; (v) $-x+1$ , $-y+1$ , $-z$ ; (vi) $x$ , $y+1$ , $z$ . |                 |                     |              |            |  |

Fig. 1







